Quiz 2b-1

(!) This is a preview of the draft version of the quiz

Started: May 24 at 8:39pm

Quiz Instructions

This quiz is "open book"; allowed aids include the textbook, all course notes, and a calculator or spreadsheet for performing calculations. However, you must answer each quiz question individually. No group work or chats with other students are allowed during the quiz. If you have a question Prof. Sealfon is..

The assessment will end 25 minutes after you start, or at 12:10pm, whichever comes first. You will see one question at a time. [You must submit each answer by clicking Next in order to see the next question; you will not have the ability to go back change any answer after it has been submitted.] After completing all 6 questions you must click Submit Quiz before the time has ended.

There are three images of the physics student in the photo, which we will label A, B, and C for clarity:

Question 1

Identify whether each image is real or virtual, and choose the best justification.
Image A must be [Select]
[Select]
Image B must be $[$ Select]
[Select]
Image C must be [Select] because it is is
[Select]

Question 2

In analyzing this image, what are reasonable approximations or assumptions about the focal lengths? (Select all that apply.)

Let $f_{A}=$ the focal length of the reflective surface that produces image A
Let $f_{B}=$ the focal length of the reflective surface that produces image B .
Let $f_{C}=$ the focal length of the reflective surface that produces image C .
$\square f_{A} \approx-f_{B}$
$\square f_{C}$ is infinite
$\square\left|f_{B}\right|>\left|f_{C}\right|$
$\square f_{A}>0$
$\square f_{B}>0$
$\square\left|f_{A}\right|>\left|f_{C}\right|$

Question 3

Image A of the student appears "stretched out" vertically. (The image is more reduced horizontally than vertically.)

Image B of the student does not appear stretched out in this way.
Which factors are necessary to explain these observations? (Select the best answers that apply.)
\square The front of the spoon acts as a converging mirror, while the back of the spoon acts as a diverging mirror.
\square The camera views the two images from different angles, and the images are produced by reflection off of different parts of the spoon.
\square Image B is reflected twice, while image A is only reflected once.
\square The object distance is greater for image B than for image A
\square The radius of curvature of the spoon is greater vertically than horizontally.
\square The back of the spoon has different focal lengths than the front of the spoon.

Question 4

1 pts

Which of these changes would invert image \mathbf{B} ? (Select all that apply. Consider each change by itself, keeping everything else the same.)
\square Moving the spoon much closer to the mirror.
\square Moving the spoon much farther away from the mirror.
\square Rotating the spoon upside-down, so that the handle is held above the spoon (keeping the same side of the spoon facing the mirror).
\square Flipping the spoon around back-to-front, so the concave surface faces the mirror (keeping the handle under the spoon).
\square Increasing the distance between the person and the spoon

Question 6

1 pts

If the student is holding the spoon so the spoon is 14 cm from the student's face and the spoon is 17 cm from the flat mirror, and we can model the bottom part of the spoon as part of a sphere with radius 2.2 cm , what is the magnification of image B ? (Sign matters.)
linear magnification: [Select] V

In the mathematical representation of this situation, the focal length of the mirror is

[Select]	and the effective object distance s is	
$[$ Select $]$		

